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Clouds and snow detection in remote sensing

Earth image from NASA’s Moderate-resolution imaging spectroradiometer (MODIS)
sensor on July 11, 2005.
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Clouds over vegetation and other land types

South America Sahara
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Clouds over bright backgrounds (snow and ice)

East Asia Greenland
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Clouds over bright backgrounds (snow and ice)

East Asia Greenland

False color RGB with R: 0.645 µm; G: 2.13 µm; B: 10.8 µm brightness
temperature.
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Methodology

Combination of fixed or dynamic threshold tests.

Use information from reflectance (VIS, NIR, SWIR) and thermal
(TIR) channels.

Detect possible snow covered area is important.

Nan Chen1 , Wei Li1 , Charles Gatebe2 and Knut Stamnes1 Enhanced cloud/snow identification in snow mixed vegetation/soil areas based on machine learning techniques



Cloud screening and snow identification in remote sensing
New method based on machine learning

Conclusion and discussion
References

Threshold based methods
Machine learning based methods

NDSI based snow detection

Indexes for mapping snow cover using VIS and SWIR data were
developed in the mid-1970s. The NDSI (Normalized Di↵erence Snow
Index) term was first coined by [Hall et al., 1995] and used to map snow
using MODIS. Prior to that, [Dozier, 1987, Dozier, 1989] used a
VIS/SWIR index algorithm to map snow using Landsat data. The NDSI
is defined as:

NDSI =
R
VIS

� R
SWIR

R
VIS

+ R
SWIR

A fixed threshold (e.g. NDSI > 0.4) is typically used to detect possible
snow-covered pixels.
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Threshold tests - the MOD35 algorithm

Threshold tests used in MOD35 algorithm
[Ackerman et al., 1998, Ackerman et al., 2010].
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Threshold tests - the ACCA algorithm

Flowchart (1 of 4) of the Automated Cloud Cover Assessment (ACCA) algorithm
[Irish et al., 2006] for the Landsat ETM+ sensor.
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Challenge: snow and snow mixed with vegetation areas

False color RGB image MYD35 cloud mask

Aqua MODIS image over East Asia, Jan. 24, 2003. Color scheme of cloud mask
figure: white/grey - clouds, blue - ocean, green - land. Only clouds detected over land
areas are shown.
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Limitations of threshold based methods

A large number of tests makes the logic very complicated and
di↵erent tests may produce conflicting results.

Fixed threshold settings make it di�cult to handle complex surface
mixing situations, especially when the surface is partially covered by
snow.

The accuracy of snow detection a↵ects that of cloud detection
because it determines the test combinations applied on each pixel.

A relatively large number of satellite channels are needed to detect
clouds as well as snow/ice (e.g. MOD35 uses 10 reflectance bands
and 9 IR bands).

Tests using thermal IR channels are not reliable over snow-covered
areas, especially over Greenland and Antarctica due to frequent
temperature inversions.
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Previous attempts using machine learning techniques

From the 1990s machine learning techniques (MLTs) are being used to
detect clouds. Due to the complexity of the problem, supervised
machine learning techniques are usually employed. These methods
include:

support vector machine (SVM)

artificial neural network (ANN)

logistic regression (LR)

High quality training data sets are the key to achieve high
performance using machine learning algorithms.
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How to get training data?

The ACCA reference data set [Irish et al., 2006], one of the most commonly used
validation/training data sets for cloud mask algorithms, is a human identified data
set. It contains 212 scenes from 188 Landsat World Reference System (WRS)
stations.
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Limitations of human identified training data set

Di�cult to prepare (need humans to identify millions of pixels).

Di�cult to achieve full coverage of solar/viewing geometries as
well as di↵erent geolocations.

Di�cult to account for seasonal land cover changes, especially
during the snow fall events.

Di�cult to apply to a di↵erent sensor due to sensor spectral
characteristic changes.
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New Approach: Simulation + machine learning

Can we use a simulated TOA reflectance dataset to train machine
learning algorithms?

If possible, then we would have the following advantages over a
human-identified dataset:

There is no need for humans to identify hundreds of images with
millions of pixels, which greatly saves human e↵ort.

The training dataset can cover the full range of possible
solar/viewing geometries.

Easy to apply to di↵erent sensors; only new training datasets are
needed.

The biggest challenge in building a simulated dataset, is to simulate
complicated land surface types and account for various possible
mixing conditions.
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How do we simulate complicated land reflectance?
Available land surface reflectance models, such as the Soil-Leaf-Canopy (SLC) model
(Verhoef et al., 2007), can be used in radiative transfer models (RTMs) to simulate
Top of Atmosphere (TOA) reflectances for an atmosphere overlying di↵erent land
surfaces.
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Changing surface parameters

Green vegetation Brown vegetation
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Sub-pixel reflectance mixing

In order to better handle the case of fractional snow cover, we assume
the following linear mixing rule for the reflectance of pixels with snow
fraction, f :

R
mix

= (1� f )⇥ R
land

+ f ⇥ R
snow

.

By randomly changing the snow fraction f and di↵erent snow/land
parameters, we can simulate the TOA reflectance of di↵erent
snow-mixed-vegetation/soil cases.
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Neural network based cloud detection

RT	
simula*on	

Aerosols	

Soil/
vegeta*on	

Snow	

Ice	cloud	

Water	cloud	

Neural	
network	
classifier	

Cloudy	

Clear	

Satellite	
data	

Over 10 million
clear-sky and
cloudy cases as
the input.

A simple
classification
neural network
with one hidden
layer.
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Training for di↵erent sensors

The new neural network based algorithm can be configured (trained) for
di↵erent numbers of channels. A 6-channel configuration was created
and tested for Aqua MODIS and a 3-channel configuration for AVHRR-3.

Sensor VIS chan (µm) NIR chan (µm) SWIR chan (µm)
3-channel 0.66 0.86 2.13
6-channel 0.47, 0.55, 0.66 0.86 1.24, 2.13
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Image based results: snow-mixed vegetation/soil area

SCM	 MYD35	
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Image based results: snow-mixed vegetation/soil area

SCM cloud mask MYD35 cloud mask
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Image based results: snow-mixed vegetation/soil area
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Image based results: snow-mixed vegetation/soil area

SCM cloud mask MYD35 cloud mask
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CALIOP collocated with Aqua MODIS
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Validation using CALIOP observations as the benchmark

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a lidar
onboard the CALIPSO satellite that provides high-resolution vertical
profiles of aerosols and clouds.

Collocated Aqua MODIS/CALIOP data provide the most reliable
assessment of cloud mask results by using CALIOP’s active cloud
detection scheme.

MOD35 collection 6 product (MYD35 when using Aqua MODIS data)
and CALIOP 1 km cloud layer product for the whole year of 2008 are used
in the comparison.
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Test criteria in the comparison

Hit Rate (HR)

HR =
N

cld,hit + N
clr ,hit

N
total

(1)

Hanssen-Kuipers Skill Score or True Skill Score (TSS)

TSS =
(N

cld,hit · Nclr ,hit � N
cld,miss

· N
clr ,miss

)

(N
cld,hit + N

cld,miss

) · (N
clr ,hit + N

clr ,miss

)
(2)
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Test against MOD35 over mid-latitude region (Europe)

0 2 4 6 8 10 12
Month

75

80

85

90

95

100

H
it 

R
a

te
 (

%
)

SCM 6ch
SCM 3ch
MYD35

0 2 4 6 8 10 12
Month

40

50

60

70

80

90

100

H
a

n
ss

e
n

 K
u

ip
e

r 
S

ki
ll 

S
co

re
 (

%
)

SCM 6ch
SCM 3ch
MYD35

HR and TSS of our algorithm (SCM) and MOD35 (MYD35 for Aqua MODIS) over
Europe for the year 2008.
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Test against MOD35 over mid-latitude region (East Asia)
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HR and TSS of our algorithm (SCM) and MOD35 (MYD35 for Aqua MODIS) over
East Asia for the year 2008.
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Snow detection

How about snow detection? Can we detect snow without thresholds?

Use the same dataset in cloud mask training (only the clear-sky
cases).

A separate neural network is trained for estimation of snow fraction
or other parameters such as Leaf Area Index (LAI).

Di↵erent vegetation types (green/brown) and soil types are included
in the training dataset.
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Results: snow fraction and LAI estimation

RGB	

Snow	frac-on	

LAI	
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Summary

The new algorithm, without any thresholds, consistently performs
cloud detection using fewer channels than threshold-based
methods.

Its performance is significantly better than MOD35 (with higher
TSS throughout) in the winter seasons when the surface is partially
(or fully) covered by snow.

It can easily be re-configured for other sensors (e.g. AVHRR
and/or Landsat) with similar performance.

It can estimate the snow fraction for each pixel, which goes
beyond the traditional binary NDSI snow detection.

Other parameters like LAI or fAPAR can also be estimated in a
similar manner.
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Thank you !!

Questions ?
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Image based result: vegetated land area

South America
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Image based result: desert area

Sahara
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Image based results: snow-covered area

Comparison of cloud masks applied to an Aqua MODIS image over Greenland, Jul.
09, 2015. Left: False color RGB image; Right: SCM cloud mask. Color scheme of
cloud mask figures: white/grey - clouds, blue - ocean, green - land.
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Image based results: snow-mixed vegetation/soil area

SCM cloud mask MYD35 cloud mask
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Image based results: snow-mixed vegetation/soil area

SCM cloud mask MYD09 cloud mask

SCM	 MYD35	
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